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Guiding Objectives

High-fidelity, precise Monte Carlo simulations of realistic
intermediate and fast spectrum systems

1 Improved physics

• Representation of nuclear data

• Processing methods

2 Computational efficiency

• Memory requirements

• Calculation speed
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Unresolved Resonance Region

• Intermediate-energy
resonances can be
experimentally unresolvable

• Nuclear data evaluators give
us average information
about cross section behavior
in the URR

• Associated theoretical
statistical distributions are
known

• In nature, fine structure still
exists
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238U Single URR Realization
238U Resolved, Averaged URR

Figure : 238U total cross section at 293.6 K
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Averaged Pointwise Cross Sections

• A known, pointwise cross section is just a collapsed
distribution,

σx(E ) = 〈σx(E )〉 =

∫ ∞
−∞

dσ′xδ(σ′x − σx(E ))σ′x (1)

• More generally, we can’t collapse (resolve) the distribution to
a point, so we have a Lebesgue integral in σ′x -space,

〈σx(E )〉 =

∫ ∞
−∞

dσ′xP(σ′x |E )σ′x (2)

• This is what we have to deal with in the URR
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URR Self-Shielding Effects

• Averaging process is
equivalent to generation of
infinite-dilute cross sections

• No resonance structure
→ No flux perturbation
→ No energy self-shielding

• Mis-predicted reaction rates

• Artificially high resonance
absorption

• Under-predicted keff

eigenvalues

• Unconservative critical
assembly calculations
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Figure : Energy self-shielding schematic

• Resonance overlap can
exacerbate the effect

• Fine structure in the URR
needs to be represented
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Probability Table Method
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• Need σt magnitudes as a function of En and T

• At each discrete T , set an En mesh• At each discrete En, set a σt mesh• Randomly generate an independent realization of resonance
structure

• Record band index and magnitude at each En

• Average over all samples to compute band probability and σt
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Probability Table Method

• Stochastically generated tables of cross section values with
associated probabilities of being realized at discrete energies
AND temperatures

• Cross section values, {σ̂1
x(Ei ), σ̂

2
x(Ei ), ..., σ̂

J
x (Ei )}, are sampled

according to their associated probabilities,
{P̂1

t (Ei ), P̂
2
t (Ei ), ..., P̂

J
t (Ei )}, as necessary, throughout the

transport simulation

• Well-established method for treating URR cross section
resonance structure

• Implemented in several nuclear data pre-processing codes
(NJOY, PREPRO, PROTAB/RACER, CALENDF, AMPX,
and others)

• Drawbacks include opaqueness of the generation process, the
need for sensitivity/mesh refinement studies, and increased
memory requirements
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On-the-Fly Cross Sections

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 9 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Calculating URR Cross Sections On-the-Fly

• Average resonance parameter values given for energy ranges

• Sample the theoretical distributions of those parameters

• Generate energy-localized resonance realizations (i.e. level
spacings and partial widths) at each event

• Compute temperature-dependent SLBW resonance cross
sections via ψ − χ Doppler integrals

• Continuous phase-space (En,T , σ) analog to probability tables

• Proceeds directly from temperature-independent
resonance parameters
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Level Spacings

“Wigner’s surmise” for distribution of level spacings:

PW

(
Dl ,Jj

〈Dl ,Jj (En)〉

)
=

πDl ,Jj

2〈Dl ,Jj (En)〉 exp

(
−

πD2
l ,Jj

4〈Dl ,Jj (En)〉2

)
(3)
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Figure : Sampled and analytical level spacing distributions
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Partial Widths

Partial reaction widths, Γr , are obtained by sampling a χ2

distribution:

Pχ2(µr )(y) =
exp

(
− y

2

)
y

µr
2
−1

2µr/2G
(µr

2

) ; y ≡ µr
Γl ,J
r

〈Γl ,J
r (En)〉

(4)

Construction of a discrete distribution with N equiprobable bins:∫ yi

yi−1

Pχ2(µr )(y ′)dy ′ =
1

N
; i = 1, 2, ...,N; y0 = 0; yN →∞

(5)

〈y ′〉i = N

∫ yi

yi−1

y ′Pχ2(µr )(y ′)dy ′ (6)
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Single-Level Breit-Wigner Formulae

• Elastic scattering:

σn(En) =
NLS−1∑
l=0

NJSl∑
j=1

Nres∑
λ=1

σλ

([
cos (2φl(ρ))−

(
1− Γn,λ

Γλ

)]
ψ(θ, x) + χ(θ, x) sin (2φl(ρ))

)

+
4π

k(En)2

NLS−1∑
l=0

(2l + 1) sin2 (φl(ρ))

(7)

• Reaction:

σr (En) =
NLS−1∑
l=0

NJSl∑
j=1

Nres∑
λ=1

σλ
Γr ,λ

Γλ
ψ(θ, x) (8)

• ψ − χ Doppler integrals:

ψ(θ, x) =
θ
√
π

2
Re

[
W

(
θx

2
,
θ

2

)]
; χ(θ, x) =

θ
√
π

2
Im

[
W

(
θx

2
,
θ

2

)]
(9)

• Faddeeva function:

W (α, β) = exp
(
−z2

)
erfc (−iz) =

i

π

∫ ∞
−∞

dt
exp

(
−t2

)
z − t

(10)
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Event-Based Cross Section Realizations

• An on-the-fly URR cross section calculation capability is
implemented in OpenMC
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Figure : 238U elastic scattering cross section realization at 25 keV
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SLBW: Verification
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Figure : 239U 293.6 K elastic scattering cross section
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Figure : 243Pu 293.6 K elastic scattering cross section
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ZEBRA Critical Assembly

• Zero-Energy Breeder
Reactor Assembly

• UK Atomic Energy Authority

• Fast reactor assemblies

• Significant URR effects
(∼1000 pcm)
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Figure : Infinite-dilute and resonance cross section flux
spectra
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On-the-Fly vs. Probability Tables: k∞
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Figure : Comparison of on-the-fly and probability table
flux spectra

URR Method k∞ 1σ

Infinite-dilute 1.00914 0.00005
ENDF71x Tables 1.01897 0.00004

On-the-fly 1.01892 0.00004

Table : ZEBRA k∞ comparison for various URR
treatments

• OTF eliminates the need for

pre-processing and storage of

temperature-dependent probability

table data

• ∼ 1000X memory reduction

• ∼ 0.1− 10X particle simulation rate

slowdown
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Temperature-Dependent Probability Tables
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Figure : Equiprobable cross section magnitude surfaces

• Generate equiprobable cross
section magnitude surfaces
on an En − T mesh

• Randomly sample magnitude
and interpolate on mesh

• Compromise between typical
probability table and fully
OTF procedures

∆T [K] keff 1σ

0 1.00466 0.00010
100 1.00463 0.00010
200 1.00468 0.00010
400 1.00533 0.00010

Table : Big Ten keff for various URR treatments
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Section 3

Alternate Cross Section Representations
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Multi-Level Resonance Formalisms

• ENDF-6 format specifies use
of SLBW for the URR

• Level-level interference is
neglected

• Negative elastic scattering
cross sections are possible in
the resonance dips

• Multi-level Breit-Wigner
(MLBW) capability
implemented in OpenMC
(probability tables,
on-the-fly, pointwise)
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Figure : Comparison of SLBW and MLBW elastic
scattering cross sections

Figure : 234U 293.6 K elastic scattering cross sectionFigure : 244Pu 293.6 K elastic scattering cross section

Formalism keff 1σ

SLBW 1.00461 0.00010
MLBW 1.00453 0.00009

Table : Big Ten keff for various URR treatments,
293.6 K
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cross sections are possible in
the resonance dips
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(MLBW) capability
implemented in OpenMC
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Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff
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Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff

105

Energy [eV]

100

101

102

σ
t
[b
]

Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff

105

Energy [eV]

100

101

102

σ
t
[b
]

Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff

105

Energy [eV]

100

101

102

σ
t
[b
]

Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff

105

Energy [eV]

100

101

102

σ
t
[b
]

Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff

105

Energy [eV]

100

101

102

σ
t
[b
]

Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Independent, Pointwise Realizations

• Calculation of True expected
values requires independent
simulations, each using a single,
independent resonance structure

• Pointwise URR cross section
reconstruction capability
implemented in OpenMC

• Probability tables reproduce
expected values remarkably well
(not required by theory)

• Spread of individual variates can
be significant, 100’s pcm on keff

1.00300 1.00400 1.00500 1.00600 1.00700 1.00800
keff

0

200

400

600

800

1000

P
(k

eff
)

Sample keff Distribution ±1σ

Gaussian Fit

Figure : 238U total cross section at 293.6 K

Figure : Distribution of Big Ten keff from independent
URR realizations

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 21 / 38



Unresolved Resonance Region
On-the-Fly Cross Sections

Alternate Cross Section Representations
Doppler Broadening Secondary Distributions

Extended URR Evaluations

• Fast spectrum system fluxes
often peak above the URR

• There can still be resonance
structure up there

• Neglect of resonance
structure can strongly affect
integral tallies

• Are there any evaluators in
the room?!
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Figure : ZEBRA flux spectrum w/ 238U URR highlighted

Figure : RRR and URR 238U total cross sections, 293.6 KFigure : ZEBRA k∞ variation with EH
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Competitive Reaction Resonance Structure
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Figure : 238U first-level inelastic scattering resonance
structure

• Competitive reactions
(e.g. level inelastic
scattering) have resonance
structure

• ENDF-6 format allows a
single competitive width

• Resonance structure cannot
be accounted for properly if
two competitive channels
are open

• In practice, ALL competitive
resonance structure is often
neglected
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Figure : Flux spectra comparison

System Competitive Cross Section keff 1σ

Big Ten Averaged 1.00459 0.00004
Big Ten Resonant 1.00524 0.00005

ZEBRA Averaged 1.01892 0.00004
ZEBRA Resonant 1.02054 0.00004

Table : keff comparison for averaged and structured
competitive cross sections, 293.6 K

• Competitive reactions (e.g.
level inelastic scattering)
have resonance structure

• ENDF-6 format allows a
single competitive width

• Resonance structure cannot
be accounted for properly if
two competitive channels
are open

• In practice, ALL competitive
resonance structure is often
neglected
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Section 4

Doppler Broadening Secondary Distributions
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Motivation

Methods for Processing ENDF/B-VII with NJOY
(my emphasis)

“The code uses the input value thnmax, or the upper limit of
the resolved-resonance energy range, or the lowest threshold
(typically>100 keV) as a breakpoint. No Doppler broadening
or energy-grid reconstruction is performed above that
energy. No broadening of thresholds is normally done, because
we dont have methods to calculate the scattering
distributions from broadened thresholds. There is an option to
override this for applications like astrophysics that might desire to
compute reaction rates for broadened thresholds.”

• Doppler broadening of fast energy region cross sections – and
reaction kernels, in general – is being restricted by an inability
to broaden secondary distributions consistently

Jon Walsh August 19, 2015 OTF Nuclear Data Methods 26 / 38
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Doppler Broadened Fast Region Cross Sections
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Figure : Comparison of broadened 56Fe elastic scattering cross section with 0 K reference
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Reaction Kernel Broadening

• Typical formulation of Doppler broadening rigorously preserves
integrated reaction rate for reaction x :

vσx(T , v) =

∫
∀~vt

d~vtV (T , ~vt)vrelσx(0, vrel) (11)

• Note: it is common to factorize V (T , ~vt) into independent
distributions for µin and |~vt |, as in the Maxwell-Boltzmann
ideal gas model

• The effective, temperature-dependent cross section, σx(T , v),
is used to determine where in phase-space a reaction of type x
occurs

• But, we also need to know the differential nature of the
individual reaction events that occur (e.g. ~vt , µout)
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Secondary Angular Distributions

• Nuclear data evaluations
provide 0 K secondary
angular distributions
(sometimes implicitly via
Legendre coefficients)

• It is common practice to
independently sample these
0 K distributions

• Implicit assumption that
distributions do not have
significant energy
dependence

Figure : 56Fe elastic scattering angular distribution
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Broadening Angular Distributions

• Without loss of generality, the µout-integrated cross section,
σx(0, vrel), can be expanded into its angular components

vσx(T , v) =

∫
∀~vt

d~vt

∫ 1

−1
dµoutV (T , ~vt)vrelP(µout|vrel)σx(0, vrel)

(12)

• Integrand and a normalization constant constitute, by
definition, a probability density function for the consistent,
Doppler broadened double-differential reaction kernel

P(~vt , µout|v) =
1

vσx(T , v)
V (T , ~vt)vrelP(µout|vrel)σx(0, vrel)

(13)
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0 K and Broadened Angular Distributions

• Integrate over ~vt to obtain the broadened scattering cosine
distribution and compare with the 0 K data
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Figure : Comparison of broadened kernel with 0 K reference
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0 K and Broadened Angular Distributions

Figure : Comparison of broadened kernel with 0 K reference
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0 K and Broadened Angular Distributions
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Reaction Kernel Broadening Methods
• P(~vt , µout|v) can be deterministically Doppler broadened, as

was previously shown

• Broadened kernels can then be straightforwardly sampled in
Monte Carlo simulations

• Such a treatment is perfectly legitimate and an improvement
over the state of the practice

• However, the kernels are only exact at the precise temperature
to which they are broadened

• What about multiphysics? Possibly dramatic increase in
secondary distribution memory requirements

• An entirely equivalent stochastic sampling method is
derived and implemented in OpenMC

• No memory requirement penalty incurred – 0 K data
only
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Verification

• Excellent agreement between stochastic and deterministic
kernels
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Figure : Comparison of stochastic and deterministic broadened kernels
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Integral Simulations

• The stochastic kernel broadening method has been
implemented for elastic scattering in the continuous-energy
neutron transport code OpenMC

• Preliminary studies of integral effects are underway
• 239Pu sphere reflected by 56Fe
• Negligible bias at room temperature at the few-pcm level
• +609± 10 pcm bias at 107 K

• Suggestions for systems in which this effect is important?

• Design criteria:
• High-temperatures to get secondary distributions that change

over the range of attainable relative energies
• Fast spectra typically needed to reach structured

(i.e. non-isotropic) scattering distributions
• 56Fe, 9Be, C, possibly others
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Conclusions

• A flexible probability table interpolation scheme has been
implemented and tested with results comparing favorably to
the continuous phase-space on-the-fly approach

• Several alternate resonance data representations have been
implemented and tested with results showing varying degrees
of significance

• A fully consistent, memory-efficient stochastic method for
Doppler broadening of the double-differential elastic scattering
kernel has been derived, implemented, and verified
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Future Work

• Continued analyses with the presented methods

• Extend Doppler broadening of reaction kernels

• Secondary angular distributions for other reactions
• Secondary energy distributions
• Correlated angle-energy distributions

• Validation of double-differential broadening?

• Extended URR evaluation?

• Graduate?
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